Leukotriene B4 as a Potential Therapeutic Target for the Treatment of Metabolic Disorders
نویسندگان
چکیده
In the last decade, the incidence of metabolic disorders has increased drastically worldwide and is becoming a global health threat. Studies have shown that the pathogenesis and co-morbidities of diseases such as diabetes, gout, and atherosclerosis involve chronic low-grade inflammation and metabolic changes (1). As this inflammation is triggered by endogenous substances, instead of pathogens, it is called “sterile inflammation”. Chronic low-grade inflammation can be triggered by the accumulation of metabolic products such as uric acid, glucose, cholesterol, and free circulating fatty acids. These substances can induce inflammation by two distinct mechanisms: (1) engagement of Toll-Like Receptors (TLR), such as TLR-2 (2), TLR-4 (3), and TLR-9 (4) and (2) activation of the intracellular receptor complex known as inflammasome that leads to caspase-1 activation, an enzyme that cleaves prointerleukin (IL)-1β into its active form (5–7). IL-1β acts on its receptor IL1R1, a member of the TLR family whose activation is dependent on the presence of the adaptor molecule Myeloid Differentiation primary response gene 88 (MyD88). Although TLR-2 signaling is mediated mainly through the MyD88, TLR-4 activates MyD88-dependent and TIR-domaincontaining adapter-inducing interferon β (TRIF)-dependent pathways. The MyD88-dependent pathway culminates in the activation of the Nuclear Factor kappa B (NFκB)/Activator Protein (AP) 1 and the TRIF-dependent pathway leads to delayed activation of NFκB associated with Interferon Regulatory Factor (IRF) (8). Thus, NFκB is a transcription factor of several genes involved in inflammation and also regulates its own transcription (9). In metabolic diseases with chronic lowgrade inflammation, NFκB is continuously activated (10). Since NFκB can be activated through the adaptor molecule MyD88, modulation of its expression should have important consequences on the inflammatory response. Leukotrienes are lipid mediators whose production is increased during inflammation. Activated phospholipase A2 releases arachidonic acid from membrane phospholipids. Liberated (soluble) arachidonic acid can be metabolized by 5-lipoxygenase (5-LO) to produce leukotrienes including LTB4 and cysteinyl leukotrienes, LTC4, LTD4, and LTE4. It is well documented that leukotrienes are mediators of inflammatory events such as edema and leukocyte infiltration and activation and that they have an essential role in acute and chronic inflammatory diseases. Leukotrienes were also shown to mediate resistance to infections by several microorganisms (11). In macrophages, leukotrienes were shown to potentiate phagocytosis and microbicidal activity by affecting the mechanisms involved in actin polymerization and activation of NADPH oxidase, respectively (12). LTB4 binds to two distinct G protein-coupled receptors. The Leukotriene Receptor (BLT)1 is the high affinity receptor that induces inflammation, enhances cytokine production, phagocytosis, and mediates antimicrobial effector functions. Through BLT1, LTB4 was shown to enhance MyD88 expression and potentiate MyD88-dependent stimuli responses while no difference on MyD88-independent stimuli was found (13). BLT2 binds LTB4 with lower affinity and has
منابع مشابه
Pharmacometabolomics identifies dodecanamide and leukotriene B4 dimethylamide as a predictor of chemosensitivity for patients with acute myeloid leukemia treated with cytarabine and anthracycline
Clinical responses to standard cytarabine plus anthracycline regimen in acute myeloid leukemia (AML) are heterogeneous and there is an unmet need for biological predictors of response to this regimen. Here, we applied a pharmacometabolomics approach to identify potential biomarkers associated with response to this regimen in AML patients. Based on clinical response the enrolled 82 patients were...
متن کاملSoy Isoflavone Genistein Is a Potential Agent for Metabolic Syndrome Treatment: A Narrative Review
Metabolic syndrome has a high prevalence (about 22.4% in adult individuals) in developed countries. Inflammation due to obesity and fat accumulation is the most important factor in the progression of metabolic syndrome. In cells which have a receptor for insulin hormone, inflammatory mediators target the insulin signaling pathway and cause insulin resistance. Peroxisome proliferator-activated r...
متن کاملThe Role of Leukotrienes in Respiratory Tract and Asthma
Polyunsaturated fatty acids play a role as precursors of biologically active compounds that can act as mediators or modulators of various cell functions. Thus three main groups of derivatives the prostaglandins, the thromboxanes, and recently discovered leukotrienes are formed by oxygenation and further transformation of various polyunsaturated fatty acids of which arachidonic acid plays t...
متن کاملInflammation resolved by retinoid X receptor-mediated inactivation of leukotriene signaling pathways.
Leukotrienes are implicated in the pathogenesis of diverse, inflammation-driven diseases. Metabolic inactivation of leukotriene signaling is an innate response to resolve inflammation, yet little is known of mechanisms regulating disposition of leukotrienes in peripheral tissues afflicted in common inflammatory diseases. We studied leukotriene hydroxylases (CYP4F gene products) in human skin, a...
متن کاملSystemic leukotriene B4 receptor antagonism lowers arterial blood pressure and improves autonomic function in the spontaneously hypertensive rat.
KEY POINTS Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood. In the SHR, we observed a...
متن کامل